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Transform Decoding of Reed-Solomon Codes Over GF(22")
Using the Techniques of Winograd*

I.S. Reed

University of Southern California

T. K. Truong and B. Benjauthrit
TDA Engineering Office

A new algorithm for computing a Fourier-like transform over GE{22" ), where n =
1,2,3,4,5, is developed to encode and decode Reed-Solomon (RS) codes of length 22"
Such an RS decoder is considerably faster than a decoder that uses the conventional fast
transform over GF({22" ),

l. Introduction

Fast real-valued transforms over the group (Z,)™ were developed first by Green
(Ref. 1) to decode the (32,6) Reed-Muller code (Ref. 2) used by JPL in the Mariner and
Viking space probes. Recently Gore (Ref. 3) extended Mandelbaum’s methods (Ref. 4)
for decoding Reed-Solomon codes. He proposed to decode RS codes with a finite field
transform over GF(2"), where n is an integer. Michelson (Ref. 5) has implemented
Mandelbaum’s algorithm and showed that the decoder, using the transform over GF(2n),
requires substantially fewer multiplications than a more standard decoder (Refs. 6, 7).
The disadvantage of his transform method over GF(2") is that the transform length is an
odd number, so that the most efficient FFT algorithm cannot be used.

For a space communication link, it was shown in (Ref. 8) that the concatenated
l6-error-correcting, 255-symbol RS code, each symbol with 8 bits, and a k = 7, rate = 1/2
or 1/3, Viterbi decoded convolutional code, can be used to reduce the value of Eb/NO
required to meet a specified bit-error rate P, . Here E, is the received energy for each bit,
and N is the noise power spectral density at the receiver input. Such a concatenated
RS — convolutional code is being considered currently by JPL for the Voyager missions.

*This work was supported in part by the U.S. Air Force Office of Scientific Research under Grant
Number AFOSR 75-2798.
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The Voyager RS code; utilizes 255 symbols for information and error control out of a
possible 256 symbols. Of the 255 RS symbols only 223 are actually used as information
symbols. The remaining 32 symbols are parity check symbols. It is by this means that the
255-symbol RS code is concatenated with a k = 7, rate 1/2 or 1/3 convolutional code.

In this paper, a new algorithm based on the methods of Winograd (Refs. 9, 10) is
developed to compute a transform over GF(28) or more generally over GF(22") for
n=1,2,....,5. This transform algorithm over GF(22") for n =1,2,3,4 requires fewer
multiplications than the more conventional fast transform algorithm described by Gentle-
man (Ref. 11). The algorithm is presented in detail in this paper only for the cases
n=2,3. This algorithm for other values of n and for RS codes over GF(2™) where m #20
can be treated in a similar manner though perhaps not as simply.

Il. A New Algorithm for Computing a Transform over GF(22")
of 22" —1Pointsforn=1,2,...,5

Let GF(22") be the finite field of 22" elements. Also let N be an integer that divides
227 - 1. Next, let the element yeGF(22") generate the cyclic subgroup of N elements,
Gy = {7, v%. ... YN =11}, in the multiplicative group of GF(22™). The transform over
this subgroup Gy can be defined by

A, = 5 a.Yij
U=
for
0<j<N-1
where

Rewrite this in matrix form as

A=VWa, (1
where
T
W' = (w, .
( 1,3)
and
\ ij
w, ., T
1,] v



Also let

N-1
A = a,
0 {=% 1
and
A.=A_ + B
j 0 ]
for
j=1,2,..., N-1
where
N-1
= 1]
BJ Z a1Y
=]
That is, let
B =Wa (2

where W is the (N~ 1) X (N - 1) matrix (yd); ; . and a, B are the column matrices (z;)
and (By,), respectively.

For n = 1,2,...,5, the order of a multiplicative group of GF(22") can be factored
into Fermat prime factors, ie.,

oht n-1 .
27 -1 =[] @2t +1)
i=0

If N is a Fermat prime p, one can find an element « ¢ GF(P) which generates the cyclic
subgroup of p- 1 elements. Hence a permutation or substitution ¢ can be defined by

1, 2, ..., P=2, P-1

g = mod p
a, a2, cees aP 2, aP 1 = 1

where all the elements of this substitution are taken modulo p.

Using the above permutation, by (Ref. 12), one can permute the indices of B, a, W
defined in (2) so that the matrix W = (yoo®), . s cyclic. That is,
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By 8ty o (1)o(3)
o(3 i=1
p-1 oci+]
= a ..\ Y (3a)
71 oW
-1
X o (i+§)
- Z aO(i) o
i=1
for
j=1, 2, s p-1
This is reexpressed in matrix form as
B=W3a (3b)
where
- ~J c<i+j§
= , W= .
B (Bg(j)) (Y 1,940
and

3= gy

By (3a) B, ;) is a cyclic convolution of ag ;) and vo® forj=12,---,p- 1. But also (3a)
is the set of coefficients of

pz_:l i-1
T(u) = a .y u
= o(p-1)
p-1 .
- 1
X yo(l) ur 1 mod TL |
i=1

Since p is a Fermat prime, uP~1 - 1 = (u + 1)P~! mod 2 so that one cannot factor
uP~1 - 1 over GF(2) into irreducible relatively prime factors. Hence, Winograd’s method
(Refs. 9, 10) for using the Chinese remainder theorem to evaluate T(u) with the residues



of these factors cannot be used directly. Thus, special techniques are developed in the
following sections to calculate the p-point transform over GF(22"), where p is a Fermat
prime.

Let

where

for i # j. Using the Chinese remainder theorem (Ref. 13), it is shown by Winograd in
(Refs. 9, 10) that the transform matrix W' defined in (1) can be transformed into the
direct product of Wi, W),... W, where W, is the matrix of an N;-point discrete
Fourier-like transform. Assume the number of multiplications needed to perform an
N;-point transform over GF(22") fori=1,2, ... kis m;. Then, the number of multiplica-
tions for computing an N-point transform is mym, ...m.

lll. Transform Over GF(2*) of 15 Points

Consider the finite field GF(24). Since N =24 - 1 =3 X 5, the algorithm described in
the previous section can be used to calculate the transform of 15 points over GF(2%).To
do this the N;-point transforms over GF(22") are first developed individually for N; =35.
Let v be a 3rd root of unity in GF(22™) forn=1.2, ... 5.

ForN; = 3, the transform over GF(22") forn = 1,2, ... 5 is expressible as
0 0 0
Ay Y, Y, ¥ a
0 1 2 )
A=Yy, v ¥ a; 4)
0 2 1
Let
- v @ ra +ay
my Y a ay a,
_ 1
m, = (a1 + az) Y
_ 2 1, _ 0 )
m, = (v Y a; = v o a
_ 2 1 _ 0
my = (v -y) sa, =y a,
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Thus,

Ay = M

_ (6)
Ay my tmyptm,
A2 = mO + ml + m3

In what follows, a multiplication by the element ¥ will need to be considered
sometimes as a multiplication. Hence by (5), if one includes multiplications by the unit
79 =1, the total number of multiplications needed to perform the above transform is 4.

Next consider the case N; = 5. Let 7y be a S5th root of unity in GF(22") for

n=12,3,....,5 The 5-point transform is equivalent to
A 0 0 0 0 YO a
0 Y Y Y Y 0
A 0 1 2 3 4 a
1 Y Y Y Y Y 1
0 2 4 1 3
A, = Yo YooY Yy a, (7
0 3 1 4 2
A3 Y Y Y Y Y aq
A o) 4 3 2 1 a
4 Y Y Y Y Y 4
Thus,
A = v (a +a, +a +a + +
0 volay Tap ta;, tazta tag)
and
B 1 2 3 4
1 Y Y Y Y al
_ B 2 4 1 3
B = (B, = 2 = Y Y Yy v )
3 4
B3 Y Yl Y Yz 33
4 3 2 1
B 4 Y Y Yy Y 2,
= Wa = (w,,) (a,)
ij i
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Let

1 2 3 4 1 2 3 4
G = = mod 5
9 2% 3 b (z L3 1)
Now
B . = . .
B (1) Mo (1), o(3)) 2o(i)
or
By V2,2 V2.4 2.3 Vo1 a,
B, Yo, Va4 Y430 Y4 2,
T = = (8)
By Y3,2 V3,4 V3,3 V31 a4
By 1,20 Yi,40 Y13 Vi 3

Y Y Y Y 32
3 1 2 4
Y Y Y Y 34
- 1 2 4 3 = Wa
Y Y Y Y 83
2 4 3 1
Y Y Y Y al
This is of form
Yl A B X1
Y2 B A X2
where
B2 B3
Y = ) Y = ’
1 B 2 B
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2 3
Xl = . s X2 = . ,
4 2
4 3 1 .2
Y Y Y Y
A = , B =
3 1 2 4
Y Y Y Y
Thus
Y1 AX1+BX2 A(X1+X2)+(B—A)X2
Y, B X, +AX, A +E) + (B -A) X
D + E
D+ F
where
= + = -—
D A (Xl X2), E (B A) X2,
F = (B - A) Xl
Now
dl
D = = A(Xl+X2)
dZ
4 3
Yoy a, tag
- 31
Y Y a4+al
3 4 3
: +
Y (al+a2+ag+aa)+(\ -i—\{)(a2 a3)
3 1 3
+ .
Y (al az+a3+a4)+(y +Y)(a4+al)
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E

(B - 4) (X))

1 4
Gy~ + v) (al + a3) +

1 A 0
™+ v) (a2 + aa) + v a

Similarly

0

1, 4
G+ v (a2 + a4) tvoa,

0

1 4
vy~ + v) (a, + a4> tyoa,

Thus

4
1 (a; ta +a3+34)+(Y3+Y) .

2

3

3
¥ (ay F a2y +aytay) + e ¥7) -

3

4 1
Y (al+a2+a3+aé)+(y3+y) (az+a3)+(y +y4) (a,

3
o

3
Yoay vy (al+a2+a3+aé)

(ap +a) + (0 + 4 (a, + a,)

0
+az+a3+a4)+(y +73) (al+a

(a; +a) + (r + 7™ (a, + a,)

0 3
+ a, + ay + aa) + (v +v7) (a2 + a

(a2 + a3) + (v + YA) (a\3 + al)

1 4 0
(a, +a) + (Y7 +v) (a8 +a3) +v a

4 0
(a1.+aA) + (Y1+Y) <a1+a3) ty a

3 4 0
(al+a2+33+a4)+(y1+\() (al+ab)+(Y+Y) (az+aq)+y a

0
a

3

L

3

0

+a4)+y a

4

2

+ a

2 Tagtoa)

+ a

3 ta,tap)
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0 0. .3
A —Y(a0+a +a, +ta +a4)+(Y +Y)(az+a3+a4+al)

3 17 %74
R R N (A I CH W
2 T %3 A
+Y0a4
A, = YO (a. +a, +a,+a,+a,)+( 04 3) (a, + + +a.)
4 o T A T AT AT A, YTy 2 TA3 T ATy

1 3 4 0
+
vy + v (al + aa) +(y +y) (a + a3) +ty a,

Now let
m, = YO (an + a, +a, +a, +a,)
0 0 1 2 3 4
_ 0 3N .
m = ¢y + ) (al+32+33+34)
_ 3 4
m, = (v ) - (g, F a3)
_ 1 3
my = () - (ay F a4)
L ey
_ 4
m, = (v +v) = (a) aa) ©)
= O -
Mg Yot Ay
= O . a
M7 ¥ 3
m, = 0. a
8 Y 4
m — O .
9 LA
Sl = mO + ml + m2
52 = mo + ml + m3
Then
By T Mg
Al = 52 + m5 + m9
A2 = Sl + m, + me (10)
A3 = Sl + m5 —+ m8
A4 = 82 + m4 + m7
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If again one includes multiplications by the unit v9, it follows from the algorithm in
(9) that the number of integer multiplications needed to perform a S-point transform is
10. If multiplications by 0 are excluded, evidently only 5 multiplies are actually needed.

Now consider the case N = 15 = NN, = 3 - 5. Let integer 0 <i < 15 be represented
by a pair (i;,i,) = (i mod 3,imod 5). Since (3,5) = 1, by the Chinese remainder theorem,

i = (il * 10 +1i, * 6) mod 15 (11)

Let v, and v, be 3rd and 5th roots of unity in GF(24), respectively. The 15-point
transform over GF(24)in i; and i, is

15 y
A, = Z a. vy
J i=o *
or
N ) 32—:1 5-1 . , 12-32 , 11-31
Gpadp) oo [ 00 "Gt 2 1
1 2
(12)
5 .
- Y s Gy P
~o i 02
1
where
5-1 L.
a, (j,) = Z a,. . y 2 2
i,z o Gt 7y
2
jl = 0,1,2, and
jz = O’l" b 4

or in matrix notation,
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where

0 0 0 0 0 a(i 0)
Y2 Y2 YZ Y2 Yz 1°
0 1 2 3 4 a,.
Y, Yo Yy Yy Yy (11,1)
_ 0 2 4 1 3 — B a,.
W," = Yo Yo Y9 Yy Yy , ail = (11,2)
0 3 1 4 2 a,.
Yo Yoo Yy Yy oYy (153)
0 4 3 2 1 a,.
Thus (12) becomes
i ] )
- 1 -1 -
A = t Y W, a,. (13)
: 1 2 i
31 o 1
for
i = 0,1,2
or
— ' ' 1 .
AO W2 W2 w2 ao
K 1] 1 1] 2 -
= W W
1 2 Y1 Wy a
—_ t 1 2 1 -
W W
) 2 "Y1 WYp[ \3
Now by (11), one obtains Ko in terms of A :
A00,0) o
Ao, 1) A
b =1 Ao,y | T | A2
Ac0,3) As
A00,4) A



Similarly

A0 As

A Al

S » Ay A

Ag Ag

A ALy

and

2n \ 2410 45
%6 4 a1
ao = 312 N al = 8.7 N 82 = 82
a3 413 a8
\ 49 a4 414

Using the 3-point transform in (4) and making the correspondances, YOoW,,
Y oW,y,, vy29W,y2 one obtains

+ a +32)=w a., +a, + a (14)

vy (e, +a) ’
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A = M,
0 0 (15)

> |
]
=
+
=
+
=

and

A3 = MO+M1+M3

Observe that all four matrix multiplies in (14) are 5-point transforms of exactly the
same form as (7). Thus one may compute M; for j=0,1,2,3 in (14) with a procedure
similar to that used to compute the matrix defined in (7).

The number of multiplications for computing an M; for j = 0,1,2,3 in (14) is 5
excluding multiplication by 0. Thus, the total number of multiplications needed is
4 X 5=20.

IV. Transform Over GF(28) of 255 Points

Since N =255=3-5+17=N, - N, - N5, by Winograd’s algorithm, one needs to
compute an N;-point transform over GF(28) for N;=3,5,17. An N;-transform over
GF(28) for N; =3 or 5 was computed in the last section. For N; = 17, the permutation ¢
is given by

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
5, 8, 6, 13, 14, 2, 10, 16, 12, 9, 11, 4, 3, 15, 7, 1

Applying the above permutation to (2), one obtains a 16 X 16 cyclic matrix. By
theorem 1 in Appendix A, the cyclic matrix can be partitioned into blocks of 4 X 4
matrices so that the blocks form a 4 X 4 cyclic matrix. This has the form

T A B C D S

N
N

T B C D A S

T C D A B S

=~
£~

w
w

T D A B C S

fot
)
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where

bs b4
by b,
E b 4 T b
6 10
b3/, 16 ,
/blZ\ /b3\
by bs
3 T b 1T b
11 7

8 6 13 14
Y

6 13 14 2
Y

14 2 10 16
Y Y
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Y Y
5 8
Y Y
8 6
Y Y
6 13
Y Y ,
414
2y
5, = )
10
N6 ’
a3
215
5, = )
7
3

Now if one makes the correspondences, A«<>y%, B<y3, C+y,Doy2,and I, =A+B
+C+Dey+ 92+ 93 +9%=1 in (8), then by a procedure similar to that used to
compute the matrix defined in (8) one obtains

N

Ny

B - (Sl + S, + S

(A + B)

(C + B)

(C + A)

(C + A)

o ¥ 835
(SZ + 53)
(Sl + Sl})
(5, + 5
amn
(52 + SA>



and

Equation (17) requires 9 (4 X 4) matrix multiplies. Then

3
i

V., + N + N

2 1 4 6
T = V, +N, + N

4 2 4 7 (18)
T3 = Vl + N5 + N8
Tl = V2 + N5 + N9

To find Ny, ... Ng, one needs to multiply matrices of form (A + B), (C + B), etc., by
vectors (S, + S;), S;, etc. For example, consider N, = (A + B) - (S, +5;),

6, 10 13, 16 14 12
YooY LYty

8, 2
£ YR,y oty Ly ag + a;,
£ Y6+Y10,Yl3+Yl6, 1§+y12’yz+Y9 4+ a
N - A 8 9
2
13, 16 14, 12 2,9 10 11
£, YOOy LY Ry L,y LY Ty ac ta)
14, 12 2.9 10 11 16 4
£q YORY Ly YL,y Y Lyt a3t a, [(19)
J, K Eq
K, L £,
where J, K, L are 2 X 2 matrices. Hence
+ + (J+
— FO _ JK EO . (EO El)K (J K)EO
) =
F » + +
1 K L El »(Eo El)K (L+K)EO
Let
U = + .
1 (E0 El) K
- . 20
u, (J4K) E, (20)
U3 = (L+K) - EO
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Then Fy =U, +U,, F, = U, +U;. Note that 3 (2 X 2) matrix multiplies are necessary to
perform (20). The matrix U, in (20) is given by the relationship,

13, 16 14, 12

uy YUY T,y Yy a 5+alz+a 6+all
Ul = =
' 4,12 2.9
u, YOy, Y +Y ag+ag+al3+a4
(21)
. ab kl _ b - (kl+k2) + (atb) - kl
beflk, b - (kl+k2) + (b+c) k3

Equation (21) requires 3 multiplies. In a similar manner, the matrices U, and Uy in (20)
can be obtained, using 3 multiplications. Thus the total number of multiplications needed
to perform (19) is 9.

In a similar fashion, matrices N, and N; for i=3,...,9 given in (17) can also be
obtained, each requiring 9 multiplications. Hence, the number of multiplications needed
to perform a 17-point transform over GF(22") for n=3,4,5 is 9 X 5 =45, excluding
multiplications by ¥°. To include multiplications by 79, it follows from (18) that the
total number of multiplications needed is 9 X 9 + 1 = 82.

By the same procedure used to compute the 15-point transform over GF(24) in the
last section, the total number of multiplications needed to perform a 255-point transform
over GF(28) is 4 X 10 X 45 = 1800 multiplies. If N=22" - 1 =N, « N, --- N, where
N; is a prime number for i=1,2,... k, then the total number of multiplications needed
to perform a (22" - 1) - point transform is

k—2 zi 2n_l_2
Mm=J] G° +1) +5x3

By the principle of mathematical induction one can show that

2n+l

n i
[~ +1=-"—7"
i=0

for any integers m > 1 and n 2 0. Thus

k-1 n—-1
2 _
M= (3 - 1)/2 + 5% 3° 2

By using a more conventional fast transform technique, Gentleman shows (Refs. 5, 11)
that an N-point transform of such an N requires N(N, + N, +...+ N, - k+1)
multiplications, including multiplications by unity. The present algorithm for computing
the (22" -1) - point transform for n=1,2,...,5 and Gentleman’s algorithm are
compared in Table 1. The number of multiplications needed to perform these algorithms



is given for both cases. From Table 1, one sees that forn = 1,2,3.4, the new algorithm for
computing the (22" - 1) - point transform requires fewer multiplications than Gentle-
man’s algorithm. This is not true for n = 5, however.

V. Transform Decoder for Reed-Solomon
Codes

It is shown in (Ref. 14) that RS codes can be decoded with a fast transform algorithm
over GF(p™) and continued fractions. There it was shown that the decoding of RS codes
with a finite field transform over GF(p™), where p is a prime and n is an integer, was
composed of the following 4 steps:

(a)

(b)

(©)

(d)

Compute the transform over GF(p") of the received N-tuple,
N-1 t
ik . k
= 1 =
Ek _;_ yi(oc ) Z YiXi
i=0 i=1

fork=1.2,...2t

where t is the number of errors, Y, is the i-th error amplitude and X;= al is the
i-th error position.

Define the generating function of the sequence (E, ) as a formal power series. That
is,

E(x) = Ejx +E,x 2. +E2tx‘2t+
=1 '
P xt
_ i=0 * _ P(x)
t o(x)
t k t-k
x + ), (-1) 0%
k=1

Use Berlekamp’s algorithm implemented by continued fraction approximations to
determine the error locator polynomial o(x) and error evaluator polynomial P(x)
from the known Ej forj=1,2,...,2t.

Use these polynomials to compute the remaining transform of the error vector €y
€1, e BNog-

Invert the transform to recover the error vector and then obtain the corrected
code.

In order to compare the above transform decoder with the standard RS decoder, the
steps used in the standard RS decoder are stated as follows:

(1
()
(€))
4

Syndrome calculation
Berlekamp’s algorithm or continued fractions to determine o(x)
Chien’s algorithm for finding the error locations

Compute error magnitudes.
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One observes that step 3 in both approaches are equivalent. It is shown in (Ref. 5) that
step 3 in the transform decoder requires approximately the same number of multiplica-
tions as step 3 in the standard decoder. Step 1 and step 4 in the standard decoder require
more multiplications than those in the transform decoder over GF(22"). To see this, let N
be the block length of the RS code in GF(22"). Also let d =2t + 1 be the minimum
distance of the code, where t is the number of allowable errors. It follows from (Refs. 5
and 13) that the number of multiplications required to perform the syndrome and error
magnitude calculations for the standard decoder is approximately (N~ 1) (d - 1) + (2.
(Note that the performance of the conventional decoder is dependent on the number of
allowable errors.)

For a (22" ~ 1) - symbol, 2% - symbol error - correcting, RS code for n =23, the
number of multiplications needed to compute the syndrome and the error magnitudes is
given in Table 2. The new algorithm, Gentleman’s algorithm, and the standard algorithm
are compared in Table 2 in terms of the number of multiplications needed to compute
the syndrome and the error magnitudes for decoding these RS codes.
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Table 1. The complexity of transform over GF(22"_) forn=1,2,...,5

Factors No. mult. of new No. muit. of Gentleman’s
algorithm algorithm
. k 1
_1 -
N=22"_1 NNy N [ [ ezen 327 12+5x 32" "2 forn > 1 NN, + Ny + ..+ N~k + 1)
i=0 -
221 3 1 9
22* g 3x5 4x5=20 15(3+ 5~ 1) = 105
3
2271 IX5X17 4 X 10 X 45=1800 255(3+5+17-2)=5865
4
2271 IXSX 17X 257 4 X 10 X 82 X 3645 =11,955,600 65535(3+5+17+257~3)
=18,284,265
5
2271 3X 5X 17X 257 X 65537 4 X 10 X 82 X 6562 X 23914845 (232-1DGB+5+17+257+
=514,727,818,279,200 65537 - 4) = 282,673,272,
520,425
Table 2. The complexity of decoding RS of 22" — 1 points forn = 2, 3
Factors No. mult. of No. mult. of. No. mult. of.the
N N..N N new algorithm Gentleman’s algorithm standard algorithm
P2k IN(N, +Ny+- -+ Np -k +1) (N-1)(d-1)+12
15 3X5 2X20=40 2X 105=210 (14)(8)+42=128
255 3IX 5% 17 2 X 1800 = 3600 2 X 5862=11724 (254)(32)+162=8384
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Appendix A

Definition: A matrix A(i,j).ij € Z, is cyclic if for some function fon Z_,

A(i,3) = £.((itj) mod n)

where

zZ =.{1,2,..,n}

Theorem 1: Let n = ab. If A(i,j) is a cyclic matrix, then A(i,j) is a matrix of b X b
submatrices such that the submatrices form an a X a cyclic matrix.

Proof: Let A;;(k.R) be (k,2) - th element of the (i,j) - th b X b submatrix of A, where
ijeZ,, k LeZ,.

Then

AgyG0) = AbiHk,by+e)

1l

f((b(i+j)+k+2) mod ab)

For ieZ,, define the matrix (G;(k.2)) by
Gi(k’ 2) = f£((bit+k+%) mod ab)

for k,2eZ, . Since b[(i + j) mod a] =b(i +j) mod ab, we have

A5 (k0) = € (i+1) mod a (k, %)

Therefore, the a X a array of submatrices Aij is cyclic.
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